Root-N Consistent Semiparametric Estimators of a Dynamic Panel-Sample-Selection Model
نویسندگان
چکیده
This paper considers the problem of identi cation and estimation in panel-data sample-selection models with a binary selection rule when the latent equations contain possibly predetermined variables, lags of the dependent variables, and unobserved individual e¤ects. The selection equation contains lags of the dependent variables from both the latent and the selection equations as well as other possibly predetermined variables relative to the latent equations. We derive a set of conditional moment restrictions that are then exploited to construct a three-step sieve estimator for the parameters of the main equation including a nonparametric estimator of the sample-selection term. In the second step the unknown parameters of the selection equation are consistently estimated using a transformation approach in the spirit of Berksons minimum chi-square sieve method and a rst-step kernel estimator for the selection probability. This second-step estimator is of interest in its own right. It can be used to semiparametrically estimate a panel-data binary response model with a nonparametric individual speci c e¤ect without making any other distributional assumptions. We show that both estimators (second and third stage) are p n-consistent and asymptotically normal.
منابع مشابه
Simple Endogenous Binary Choice and Selection Panel Model Estimators
This paper provides numerically trivial estimators for short panels of either binary choices or of linear models that suffer from confounded, missing not at random sample selection. The estimators allow for Þxed effects, endogenous regressors, weakly exogenous regressors, and heterokedastic errors with unknown distribution. The estimators, which converge at rate root n, are based on variants of...
متن کاملSemiparametric Estimation of Heteroscedastic Binary Choice Sample Selection Models under Symmetry
Binary choice sample selection models are widely used in applied economics with large crosssectional data where heteroscedaticity is typically a serious concern. Existing parametric and semiparametric estimators for the binary selection equation and the outcome equation in such models su®er from serious drawbacks in the presence of heteroscedasticity of unknown form in the latent errors. In thi...
متن کاملExplicit estimating equations for semiparametric generalized linear latent variable models
We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the sem...
متن کاملSemiparametric Quantile Regression Estimation in Dynamic Models with Partially Varying Coefficients∗
We study quantile regression estimation for dynamic models with partially varying coefficients so that the values of some coefficients may be functions of informative covariates. Estimation of both parametric and nonparametric functional coefficients are proposed. In particular, we propose a three stage semiparametric procedure. Both consistency and asymptotic normality of the proposed estimato...
متن کاملAdaptive Elastic Net GMM Estimator with Many Invalid Moment Conditions: A Simultaneous Model and Moment Selection
This paper develops an adaptive elastic-net GMM estimator with many possibly invalid moment conditions. We allow for the number of structural parameters (p0) as well as the number of moment conditions increasing with the sample size (n). The new estimator conducts simultaneous model and moment selection. We estimate the structural parameters along with parameters associated with the invalid mom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015